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ABSTRACT--In this paper, we present recent efforts con- 
ducted to investigate the dynamic behavior of a sensor di- 
aphragm under initial tension. A comprehensive mechanics 
model based on a plate with in-plane tension is presented 
and analyzed to examine the transition from plate behavior 
to membrane behavior. It is shown that for certain tension 
parameter values, it is appropriate to model the diaphragm 
as a plate-membrane structure rather than as a membrane. 
The model predictions are found to compare well with exper- 
imental results. The analysis and results should be valuable 
for carrying out the design of circular sensor diaphragms for 
various applications. 
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plane tension, linear analysis 

Introduction 

A common element of different pressure sensors, which in- 
clude silicon piezoresistive sensors, capacitive sensors, and 
fiber-optic sensors, is a diaphragm structure.l-'4 The vibra- 
tion of this diaphragm structure is detected either through the 
displacement of the diaphragm or through the strain induced 
in the diaphragm by the vibration. In recent work, 3-6 both 
of these means have been considered for designing appro- 
priate mechanical elements for fiber-optic pressure sensors. 
The sensor sensitivity, bandwidth, and linearity are directly 
related to the structural behavior of the diaphragm. In a typi- 
cal condenser microphone, the diaphragm is a stretched thin 
structure, for which membrane equations are usually used for 
analyzing the diaphragm vibrations. 7 Static membrane equa- 
tions have also been used in other sensor designs. ]-4 How- 
ever, a membrane model is not always the most appropriate 
one. 

Sheplak and Dugundji 8 carried out static analysis of a 
clamped circular plate under initial tension and studied the 
transition range from plate behavior to membrane behavior 
in terms of the tension parameter k. For "small" plate deflec- 
tions, they have shown that the transition from plate behav- 
ior to membrane behavior can be described in terms of the 
nondimensional tension parameter k. This transition occurs 
over the range 1 < k < 20, with the plate behavior domi- 
nating for k < 1 and the membrane behavior dominating for 
k > 2 0 .  
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Here, since the sensors of interest are meant for sound- 
pressure measurements, a dynamic analysis of the diaphragm 
is necessary to determine whether characteristics such as 
mode shapes and natural frequencies need to be determined 
from a plate model, a membrane model, or a plate-membrane 
model. To this end, the earlier work 8 is extended here to the 
dynamic case and the diaphragm response is characterized 
in terms of the tension parameter k. This analysis, which has 
not been carried out previously in the literature, is an impor- 
tant contribution to this effort. Furthermore, it is illustrated 
as to how this analysis and related results can be used to 
tailor the sensor diaphragm characteristics to achieve a high 
sensitivity and a high bandwidth. The rest of this paper is 
organized as follows. In the next section, the model of a plate 
with in-plane tension is provided and linear analysis is used 
to examine free oscillations. Subsequently, plate-membrane 
transition behavior is discussed and results obtained from a 
representative case (a Mylar diaphragm) are presented. In 
the fourth section, forced oscillations are considered and dif- 
ferent results that can guide the design of a pressure-sensor 
diaphragm are presented. Comparisons with experimental re- 
suits are also included in this section. Concluding remarks are 
provided in the final section. 

Model Description and Free Oscillations 

Figure 1 illustrates a clamped, circular diaphragm of ra- 
dius of a and thickness h. The Young's modulus of elasticity 
and Poisson's ratio of the diaphragm material are denoted 
by E and v, respectively. The initial tension per unit length 
applied to the diaphragm is represented by No. 

A nondimensional tension parameter k is defined as 

k=av~-~ = -h~ 12(1-v2)N~ - h~ 12(1 - v 2 ) T  

E 
(1) 

where the constant D = Eh31(12(1-v2)) and T = N o / h  is 
the tension per unit area. In the analysis that follows, it is 
shown that the choice of a plate model or a membrane model 
actually depends on the tension parameter k, not on just the 
initial tension per unit length No applied to the diaphragm. 

Linear Model of Plate with Tension 
Starting from Love's equations, 9 including damping, ax- 

ial in-plane force per unit length Nr,  and the transverse load- 
ing per unit area f ( r ,  0; t), the nonlinear partial differential 
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Fig. I -- I l lustrat ion of a diaphragm clamped along its edge 

equation governing a plate with initial tension can be ob- 
tained as 

O2W ( 0 t O )  
ph-~+DV4w-NoVZw=r~rr l  0 rNr~r 

Ow 
- 2g--~- + f (r ,  0; t) (2) 

where r is the radial distance from the center, 0 is the angular 
coordinate, w(r, 0; t) is the transverse displacement, and I~ 
is the damping coefficient. For "small" displacements, eq (2) 
can be reduced to the linear form 6 

h OZW Ow 
P - - ~  q- DV4w -- NOV2W = -2 t~ - -~  -F f ( r ,  0; t). (3) 

The boundary conditions along the clamped edge at r = a 
and the requirement that the displacement be finite at the plate 
center (i.e., r = 0) are given by 

w(r, 0; t)lr=a = O, Ow(r,O;t) = 0 
~- r =a (4) 

I w(r, O; t)lr=0 [ < oo. 

Free Oscillations of Undamped System 
In the absence of damping and forcing, a solution of the 

form 

w(r, O, t) = W(r, 0) cos cot (5) 

is assumed, where co is the natural frequency. After substitut- 
ing eq (5) into eq (3), the result is 

-phco2W q- D V 4 W  -- NoV2W = 0. (6) 

Noting that eq (6) can be written as 

it is found that 

No+ ff No~ +4Dhco2 D 
52 ~ 2D 

- No q- ~rNo~ + 4 [O h O.) 2 D 
52 ~ 2D 

(8) 

Next, expanding the transverse displacement amplitude as 

W (r, 0) = R(r) |  (9) 

and substituting into the spatial eigenvalue problem given by 
eq (7), it is determined that 

O(O) = Am cosm(0 - ~0rn) 

R(r) = Alrnlm (s i r )  -k A2mKm (51r) (10) 

-t- A3mJm (52r) -+- AamYm (52r) 

where m is an integer since the plate is closed in the 0 di- 
rection, and Am, ~om, and Aimare constants to be determined. 
The functions lm(51r), Kin(air), Jm (ser), and Ym (sar) are 
the modified Bessel function of the first kind, the modified 
Bessel function of the second kind, the Bessel function of 
the first kind, and the Bessel function of the second kind, 
respectively. Each of these functions is of order m. 

From eqs (4), (5), (9), and (10), the finite displacement 
condition at the plate center leads to 

A2m = A4m = O. (11) 

Making use of the clamped edge boundary conditions given 
by eq (4) in eqs (5), (9), and (10), the characteristic equation 
is determined to be 

Im(alrna)Jfn(52rna) -- Jm((t.2ma)Itm(51m a) = O, (12) 

where the prime indicates a derivative with respect to r. De- 
termining the roots ofeq (12) for each value ofm and labeling 
them successively using the integer index n, it is found that 
the natural frequencies are given by 

r n2 _ P ha4D (52mna)2 [(52mna) 2 -ff k2 ] (13) 

where k is the tension parameter introduced in eq (1). The 
associated mode shapes are given by 

Wmn(r, O)= Ann [Jm(52mnr) Jm (~2rnna.__~) . ] Im (Otlmna) lm (O~lmnr) 

cos m(0 -- g0m). (14) 

Plate-membraneTransition Behavior and Results 

Here, the results of the previous section are used to exam- 
ine the free-oscillation characteristics in the limiting cases 
of plate behavior and membrane behavior and the transition 
cases between them. 

Membrane Model (D=O) 
D First, it follows that as D ~ 0, ~o --~ 0 and from eq (1) 

that k -+ ~ .  Then, from eqs (8), (13), and (14), noting that 
al -+ c~, it is found that the associated natural frequencies 
and the mode shapes are given by 

c o m n = 5 2 m n ~  (15) 
Wren (r, O) = Amn Jm (52ran r ) cos rn (0 - qgm). 
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Fig. 2--First vibration mode: transition behavior with respect 
to the tension parameter k 

18 

16 

14 

12 

10 

8 

6 

Mode:. m=O. n=5 ~ ~ ' - ' - -  
/ 

/ 
Mode: re=O, iF-4 

/ 

Mode: re=O, a=3 J 
7----------- 
/ 

Mode: nr=O, n=2 / 
/ ~---____ 

/ 
4 Mode: re=O, n = l / _  

10-I 10~ 101 k- 102 103 

Fig. 3---Different vibration modes: transition behavior with 
respect to the tension parameter k 

Plate Model (No = O) 

For this case, from eq (1), it is noted that as No --+ O, 
k --+ 0, and from eqs (8), (13), and (14), noting that Ctl = et2, 
it is found that the associated natural frequencies and the 
mode shapes are given by 

tJOmn -~- (0t2mn)2 Vf'~-h 

Wren (r, O) = amn [Jm(ot2mnr) - ~ Z  (Ot2mnr)] l,n(R2,nna) m 
cos m (0 - ~Om). 

(16) 

Plate-membrane Transition 

The results shown in Figs. 2-4 are applicable to any 
isotropic circular diaphragm whose edge is clamped. For the 
first vibration mode (i.e., m = 0, n = 1), the transition behavior 
from plate to membrane is shown in Fig. 2. To obtain this plot, 
the eigenvalue (C~2mna) is determined from eq (12) for differ- 
ent values of k. As k decreases and takes on values less than 
2, the graph of (Ot2mna) is asymptotic to the plate case (i.e., 
Ct2mna ----- 3.196). As k increases and becomes larger than 20, 
the graph of (Ot2mna) is asymptotic to the membrane case (i.e., 
Ot2mna = 2.404). There is a transition from plate behavior to 
membrane behavior in the region of 2 < k < 20. This result 
is similar to the obtained by Sheplak and Dugundji 8 for the 
static case. For higher vibration modes, this transition region 
also exists and it moves toward the direction of increasing k, 
as shown in Fig. 3. 

In Fig. 4, the variations in the radial distributions Rmn (r) 
of the first four mode shapes are shown with respect to the 
tension parameter k. As the order of the mode increases, the 
variation in the mode shape with respect to the tension pa- 
rameter k is more pronounced. 

Mylar Diaphragm: Natural Frequency Dependence on 
Different Parameters 

As a representative case, we consider a Mylar diaphragm 
with a Young's modulus of elasticity E = 3.45 x 109 Pa, 
density p = 1.29 x 103 kg m -3, and Poisson's ratio u = 0.41. 

For a diaphragm radius of 1.75 mm and thickness of 40 Ixm, 
the dependence of each of the first four natural frequencies 
on the tension parameter k are shown in Fig. 5. As expected 
from eq (13), the natural frequencies are expected to increase 
as the tension parameter k is increased. When the tension 
parameter k is less than 2, the natural frequencies almost 
remain constant with respect to k. However, when k is larger 
than 20, the natural frequencies increase rapidly. 

Figures 6 and 7 show, for k = 0, the variations in the first 
natural frequency with respect to the diaphragm radius and 
the diaphragm thickness. As expected, as either the radius is 
decreased or the thickness is increased, the first natural fre- 
quency of the diaphragm increases. Noting that a sensor's 
operating bandwidth is chosen to be less than the first natural 
frequency, the results of Figs. 5-7 are important for tailor- 
ing the diaphragm parameters in order to obtain the required 
sensor bandwidth. 

To design a sound pressure sensor, it is desirable to have 
a small size. Here, the radius of a Mylar diaphragm is cho- 
sen to be a "small" constant value (e.g., a = 1.75 nun). In 
Fig. 8, the first natural frequency is plotted as a function of 
k for the diaphragm thicknesses of 5, 10, 20, 30, and 40 Ixm, 
respectively. From this figure, it is seen that it is possible 
to obtain the same natural frequency (10.7 kHz) as that for 
the diaphragm with h = 40 Ixm and k = 0 by choosing the 
tension parameters given in Table 1. Corresponding sensitiv- 
ity curves for each h and k pair are shown in Yu. 5 It can be 
seen that for the diaphragm with the lower thickness, when 
the natural frequency is increased to 10.7 kHz by choosing 
an appropriate tension parameter, the resulting sensor has a 
higher sensitivity. It is also possible to achieve high sensi- 
tivity and high bandwidth simultaneously by increasing the 
diaphragm radius and applying an appropriate tension. How- 
ever, a small sensor size is always more preferable when a 
high spatial resolution is required. 

Forced Oscillations 

To consider the forced response of a damped diaphragm 
to harmonic excitations, eq (3) is considered and the loading 
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Fig. 4--Variations in the first four mode shapes with respect to the tension parameter k 

TABLE 1--VALUES OF k, No, AND TFOR DIFFERENT hTO OBTAIN THE SAME NATURAL FREQUENCY AS A DIAPHRAGM 
WITH h=40 [xm AND k . 0  

h (Ixm) K No (N m -1) T(N m -2) 

5 32.86 14.8052 2.9610x 106 
10 15.73 3.3926 0.6785x 106 
20 6,86 0.6453 0.1291 x 106 
30 3,45 0.1632 0.0326x 106 

10 6 

,~.,10 5 

10 4 . :f01 

10 -1 10 ~ # 10 t 10 2 

Fig. 5--Variations of the first four natural frequencies with 
respect to the tension parameter k 

is assumed to be of  the form 

f ( r ,  0; t) = p(r, O)e Jc~ (17) 

where the pressure amplitude p(r, O) is assumed to be uni- 
form and denoted by p,  and ~o is the excitation frequency. 

The interest is in primarily determining the steady-state 
response of  the diaphragm, when it is excited close to the 
diaphragm's  first natural frequency, To that end, a single- 
mode approximation is assumed as 

w(r, O, t) ~ Win(r, O)tll(t) (18) 

where ~q 1 is the modal  amplitude and W01 is the first mode 
shape of  the undamped linear system discussed in the second 
and third sections. After  making use of  eqs (17) mad (18) in 
eq (3), the approximation for the steady-state forced response 
of  the diaphragm can be obtained as 

w(r, O; t) ~ U (r, 0)eJ (c~176176 

= AoIWol (r, 0) e j(eot-~~176 (19) 
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where U (r, 0) is the displacement amplitude, 

A01 = /'1 
0,)2 O,) 2 2 2 (tO 2 

1 ~[1- (~1"1) ] +4~1 (~1"1) (20' 

WOl(r,O)=aol[JO(~ - JO(Ot2Ola)/O((/lOla) I0 (Ctl01r)] 

and Aos and tp0 are appropriate constants. Further, 

a 

~1 - -  pht-Ol ' F1 - -  W01 (r, 0)2~xr dr, and phN1 o 

2r~rW~l(r, 0)dr. (21) 
1 

N1 = a2----~- ~ 

From eqs (20) and (21), the amplitude of diaphragm displace- 
ment at the center (i.e., r = 0) is found to be 

Uo(r = 0, 0) ---- (22) 

2~pa [~--~ Jl(Ot201a )- Jo(~2~ ll(OtlOla)][l_ Jo(C~201a' ] Otlol/O(C/lola) lo(alola) J 

Equation (22) will be used to study the sensitivity of the 
diaphragm response to various parameters next. 

Displacement Variation With Respect to Tension 
Parameter, Diaphragm Radius, and Diaphragm 
Thickness 

Figure 9 shows the results for the case when a Mylar di- 
aphragm of 1.75 mm radius and 40 Ixm thickness is subjected 
to a 10 kHz excitation and pressure amplitude of 1 Pa. In the 
undamped case (i.e., ~1 = 0), there is plate-type behavior for 
k < 1. As the value of the tension parameter is increased, 
there is a transition region from a plate-type behavior to a 
membrane-type behavior. This is similar to what is seen in 
Figs. 2 and 3, where the natural frequencies are plotted with 
respect to the parameter k. With the inclusion of damping, 
in each damped case, the window of plate-type behavior is 
expanded while the transition region becomes smaller. For 
k > 20, there is a membrane-type behavior region with the 
displacement amplitude decreasing rapidly with increase in 
the tension. 

As discussed in the third section, increasing the in-plane 
tension can increase the natural frequencies. However, this 
will result in a decrease of the displacement amplitude of di- 
aphragm center. From a sensor design standpoint, increasing 
the tension can enhance the sensor bandwidth but it reduces 
the sensitivity. This becomes a trade-off issue between the 
sensitivity and the sensor bandwidth that one needs to ad- 
dress, when designing a diaphragm. For a constant value of 
tension k (here, k = 0), the displacement amplitude of a di- 
aphragm center will increase when the thickness is decreased 
and/or the radius is increased, as shown in Fig. 10. However, 
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Comparisons with Experimental Results 

Experiments were conducted to study the relationship be- 
tween the diaphragm displacement and the applied dynamic 
pressure at different excitation frequencies; with respect to 
Table 1, the parameters of the diaphragm studied in the ex- 
periment are h = 30 Ixm and k = 3.45, which corresponds 
to an intermediate behavior between plate-type behavior and 
membrane-type behavior. A loud speaker was used to gener- 
ate a pressure loading on the diaphragm surface and a laser 
vibrometer was used to measure the displacement at the di- 
aphragm center. A linear relationship was observed from ex- 
perimental data shown in Fig. 12, for a selected value of the 
excitation frequency. This relationship compares well with 
the model prediction given by eq (22). 

From the experiments, it was determined that the damping 
factor for the considered diaphragm is 0.03. The frequency- 
response curve determined from the model (eq (22)) is com- 
pared with experimental data in Fig. 13. These experimental 
data were obtained by using a white noise pressure loading 
on the diaphragm. Good agreement is found between the ex- 
perimental results and model predictions. 

as discussed in the previous section, by doing this, the first 
natural frequency will decrease, resulting in a smaller sensor 
bandwidth. This turns out to be another trade-off issue be- 
tween the sensor bandwidth and the sensitivity that one has 
to deal with, in designing a sensor. 

Sensor Bandwidth and Damping 

Apart from the system's first natural frequency, damping 
is another parameter that can be used to tailor the system 
bandwidth. To illustrate this point, in Fig. 11, again for the 
Mylar diaphragm discussed previously (k = 0), the 
frequency-response curves are graphed for different values 
of the damping factor. As expected, with sufficient damping, 
the response at the first resonance is reduced considerably 
and the region of "fairly flat" response is extended close to 
the first natural frequency of the system. 

Concluding Remarks 

To close this paper, it is noted that when a diaphragm is 
to be used as a part of a pressure sensor, a dynamic anal- 
ysis of the diaphragm is necessary. To this end, a model 
based on a plate with in-plane tension has been considered 
and analyzed here. The presented analysis and results are 
more comprehensive and accurate than those previously pre- 
sented in the literature for either plate or membrane cases. 
As illustrated by the results, the dynamic behavior of the 
diaphragm exhibits a transition from plate behavior to mem- 
brane behavior, when the tension parameter k is between 2 
and 20 with the plate behavior dominating for k < 2 and 
the membrane behavior dominating for k > 20. The model 
predictions are found to compare well with the experimen- 
tal results. From the analysis and results obtained, it is clear 
that a high sensor bandwidth can be achieved by increasing 
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the in-plane tension, increasing the diaphragm thickness, or 
decreasing the diaphragm radius. However, trade-offs be- 
tween bandwidth and sensitivity have to be examined, since 
a high bandwidth may not mean high sensitivity and vice 
versa. As pointed out, it is possible to realize high sensitivity 
and high bandwidth by reducing the diaphragm thickness and 
applying an appropriate tension. In addition, the inclusion of 
damping can help extend the flat region of the diaphragm 
frequency-response curve, resulting in an increased sensor 
bandwidth. It should be noted that the scope of this paper has 
been limited to linear behavior, and for larger amplitudes of 
the loading, nonlinear behavior is possible as pointed out in 
related work of the first author. 5 
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